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Asymptotically Dense Spherical Codes—Part I:
Wrapped Spherical Codes

Jon Hamkins,Member, IEEE, and Kenneth Zeger,Senior Member, IEEE

Abstract—A new class of spherical codes calledwrapped spher-
ical codes is constructed by “wrapping” any sphere packing
� in Euclidean space onto a finite subset of the unit sphere
in one higher dimension. The mapping preserves much of the
structure of �, and unlike previously proposed maps, the density
of wrapped spherical codes approaches the density of� as the
minimum distance approaches zero. We show that this implies
that the asymptotically maximum spherical coding density is
achieved by wrapped spherical codes whenever� is the densest
possible sphere packing.

Index Terms—Asymptotic density, laminated lattices, packing,
source and channel coding, spherical codes.

I. INTRODUCTION

A. Overview

T HIS paper is the first of two parts that present new
spherical code constructions that are asymptotically dense

as the minimum distance tends to zero. Part I introduces
wrapped spherical codes, which are constructed by mapping
finite subsets of sphere packings to the unit sphere in one
higher dimension. The precise mapping is carefully chosen to
induce good asymptotic density properties. In fact, using our
construction with the densest possible sphere packings gives
rise to the densest possible spherical codes, asymptotically.

The sequel (Part II, see [1]) to this paper introduces lam-
inated spherical codes, which are constructed by projecting
onto the unit sphere a union of known concentric spherical
codes of one less dimension. The construction is analogous to
the construction of laminated lattices. In fact, asymptotically as
the minimum distance tends to zero, the density of laminated
spherical codes approaches the density of a laminated lattice
packing in one lower dimension.

For large dimensions, the wrapped spherical codes generally
outperform the laminated spherical codes, whereas the lami-
nated codes perform better for low dimensions such as three
and four. Both families of spherical codes are asymptotically
superior to existing spherical codes. Also, wrapped spherical
codes can be constructed in any dimensional Euclidean space,
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whereas laminated spherical codes have been constructed for
dimensions less than . The wrapped codes have a somewhat
simpler construction than the laminated spherical codes.

In the remainder of Section I, basic definitions are given.
Section II discusses the best known upper and lower bounds
on spherical code density. In Section III, we give the formal
construction of wrapped spherical codes and compute their
asymptotic density. Proofs of two of the technical lemmas can
be found in Appendices I and II. Numerical performance of
wrapped codes is presented in Part II [1], in order to compare
the wrapped spherical codes with laminated spherical codes.

B. Preliminary Definitions

A -dimensionalspherical codeis a set of points in
that lie on the surface of a-dimensional unit radius sphere.
Some of the many applications of spherical codes include
signaling on a Gaussian channel with equal energy signal
sets [2], [3]; spherical vector quantization, used in low bit-
rate speech coding and other source-coding problems [4],
[5]; efficient searches of -dimensional space [6]; numerical
evaluation of integrals on spheres [7]; and the computation
of the minimum energy configuration of point charges on a
sphere [8] for chemistry and physics applications. In this paper,
we concentrate on the generic spherical code design problem
(with respect to minimum distance), rather than a particular
application of spherical codes.

Denote the surface of the unit radius-dimensional Eu-
clidean sphere by1

(1)

the -dimensional content (surface area) of by
, and the -dimensional content

(volume) of by , where is the
usual gamma function defined by

The minimum distanceof a -dimensional spherical code
is defined as

(2)

1The notation for the surface of the unitk-dimensional sphere varies
somewhat in the literature, and
k [9]–[15], Sk [16], andSk�1 [17]–[19],
have all been used.
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(a)

(b)

Fig. 1. (a) The relationship between minimum distanced and minimum
separating angle�. (b) A spherical cap.

where is the Euclidean distance in . The minimum
distance of a spherical code is directly related to the “quality”
of the code in many channel coding applications. For channels
with high signal-to-noise ratios, one generally desires to max-
imize the minimum distance for a given number of codepoints
in a code.

As this paper concentrates on asymptotically small, it
is important to clarify some notation. For a function ,
let denote any function for which there exists
positive constants and such that for all

. Requiring is not the standard usage of
, although it has also been used in the computational com-

plexity literature [20]. This usage simplifies the presentations
of several bounds in the paper. Note that with this definition,

and cannot both be true
unless for all in some interval . Also, for
example, is equivalent to
for sufficiently small . The dimension will be regarded as
a constant in the asymptotic analysis.

The angular separation between two points (vectors)
is . The minimum angular

separationof spherical code (see Fig. 1(a)) is defined as

(3)

(4)

The set of points on , whose angular separation from a fixed
point is less than , is called aspherical cap centered
at with angular radius and is denoted by

(5)

This is illustrated in Fig. 1(b). When the center of a

spherical cap is not relevant, the notation may be abbreviated
as . If spherical caps of angular radius are centered
at the codepoints of a spherical code with minimum distance
and minimum angular separation, then the caps are disjoint.
The -dimensional content of is given by

(6)

(7)

(8)

where (8) follows by using (4).
A sphere packing(or simply packing) is a set of mutually

disjoint, equal-radius, open spheres. Thepacking radiusis the
radius of the spheres in a packing. As defined in [21], a packing
is said to havedensity if the ratio of the volume of the part
of a hypercube covered by the spheres of the packing to the
volume of the whole hypercube tends to the limit, as the
side of the hypercube tends to infinity. That is, the density is
the fraction of space occupied by the spheres of the packing.
The density of a spherical code with minimum
distance is the ratio of the total -dimensional content
of disjoint spherical caps centered at the codepoints and
with angular radius , to the -dimensional content
of ; that is, . This definition is
analogous to the definition of the density of a sphere packing
(see Fig. 2). Let be the maximum cardinality of a
-dimensional spherical code with minimum distance, and

let be the maximum density among all-dimensional
spherical codes with minimum distance. Then

(9)

The value of is easy to compute for all when
. However, is unknown for all except

for a handful of values of, although a number of bounds have
been given [9], [11], [12], [17], [22]–[31]. For asymptotically
small , the tightest known upper bounds on are
given in [25] for and in [22] for , and a code
construction in [28] provides the tightest known lower bound.
However, there exists a nonvanishing gap between these upper
and lower bounds as .

A family of codes is asymptotically optimal
if as , or equivalently, if

as . Given a densest packing
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(a)

(b)

Fig. 2. Sphere packing density and spherical code density. (a) The sphere
packing density is the percentage of the square that is shaded, as the length
of the side of the square goes to infinity. (b) The spherical code density is the
percentage of the unit sphere that is shaded.

in , we show how to construct asymptotically optimal
spherical codes. Fig. 3 shows the asymptotic densities of the
best spherical codes, i.e., the densities of the spherical codes
as , for dimensions up to . For each dimension,
the limiting density of spherical codes constructed by the
various methods is computed. To emphasize the comparison
to wrapped spherical codes, this limiting density is divided
by the asymptotic density achieved by the wrapped spherical
codes. Hence, in Fig. 3, the normalized density of the wrapped
code is identically , while the normalized density of any code

whose asymptotic density is worse than the wrapped code is
less than .

II. BOUNDS ON THE DENSITY OF A SPHERICAL CODE

When designing for minimum distance, the best-
dimensional spherical code with minimum distanceis one
which has the largest number of codepoints, namely, .
Consequently, most previous authors have used as
the figure of merit for a spherical code. Using (9), any bound
on the code size may be converted to a bound on the
code density . Whereas the code size increases without
bound as becomes small, the density is always a number
in the interval . Therefore, for small minimum distances
the bounds are more easily compared if they are expressed in
terms of density. Additionally, using density as the figure of
merit instead of code size allows one to compare the quality
of codes with different minimum distances. Conversion of the
bounds from statements about to statements about

also highlights the gap between the existing upper
and lower bounds, and brings to light the fact that some of
the best bounds known are not asymptotically tight.

A. Asymptotic Spherical Code Density

Intuitively, as , the density of the densest-
dimensional spherical code approaches that of the densest
sphere packing in dimensions.2 Let the asymptotically
maximum spherical coding densitybe defined by

where is the maximum density of a-dimensional
spherical code with minimum distance, as defined in (9).
Let denote the density of the densest-dimensional
sphere packing.

Observation 1 .
A formal proof of this observation may be found in [4].

Some justification for this observation can be seen by the
fact that may be approximated by convex polytopes, as
shown in Fig. 4 when . On each face of the polytope, a

-dimensional sphere packing may be placed.
The wrapped spherical codes presented in this paper give

efficient constructions based on the intuition of Observation
1. In addition to being asymptotically optimal, they also
outperform other codes for moderate sizes of. This is
demonstrated numerically in [1, figs. 6–8].

Note that since , the maximum asymp-
totic density possible for a three-dimensional spherical code is

. The densest sphere packing is not known for ,
however.3 From Observation 1, upper bounds on asymptotic
sphere packing densities give upper bounds on spherical code
densities. For example, Rogers’s bound [21] on sphere packing
densities is used to provide the upper bound in Fig. 3.

2Fork = 3, a densest covering of Earth with dimes looks like the hexagonal
lattice packingA2 to someone standing on the Earth.

3In 1991, Hsiang announced a proof [32] (later published in [33]) of
Kepler’s conjecture, dating back to 1611, that the face-centered cubic packing
is the densest packing in three dimensions. However, the validity of the proof
has been questioned [34]. Hsiang has published a rejoinder [35].
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Fig. 3. The ratio of the asymptotic density of various spherical codes to that of wrapped spherical codes constructed from the densest known packings,as a
function of dimension. Except for the upper bound, all curves are below1, indicating the superiority of the wrapped spherical code.

Fig. 4. The unit sphere may be approximated by polytopes.

B. Upper Bounds on Density

1) Fejes T´oth Upper Bound ( ): For small , the
smallest known upper bound on is given by Fejes
Tóth [25], who proved that disjoint spherical caps with angular
radius cannot be packed on the sphere in a denser
configuration than that of three mutually tangent spherical
caps with angular radius (see Fig. 5). As a result, the min-

Fig. 5. The density of a spherical code with minimal angle separation� is
at most the percentage of area covered in the spherical triangle formed by
three mutually touching caps of angular radius�=2.

imal angular separation was shown to be bounded as

(10)

from which the following lemma is obtained.
Lemma 1:The density of any three-dimensional spher-

ical code with minimum distance satisfies
.

Proof: Combining (3) and (10) gives
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or, equivalently,

Using

and (9),

(11)

Some elementary (but laborious) calculus reveals that (11) is
monotonically decreasing for , and thus approaches
its supremum as . The limit of (11) as is

.

Since , Lemma 1 agrees with Observation
1, and implies the following.

Corollary 1: The Fejes T´oth upper bound on spherical code
size is asymptotically tight.

Proof: From Observation 1, it follows that

The Fejes T́oth bound implies

2) Coxeter Upper Bound ( ): Böröczky [36] proved
that in a -dimensional space of constant curvature, the
density of a packing of equal radii-dimensional spheres
cannot exceed the density of such spheres that mutually
touch one another. This verified Coxeter’s conjecture [22] that
spherical caps on can be packed no denser thanspherical
caps on that simultaneously touch one another. The centers
of these caps lie on the vertices of a regular spherical simplex.
This is a generalization of the Fejes Tóth bound for .
Coxeter’s bound is given by

where is determined by

and where is Schlafli’s function [10] given by
the recursive relation

with , and the initial conditions
. Unfortunately, the computational complexity of

evaluating the bound is high for , as it involves
nested integrals.

Coxeter’s bound was motivated by an argument of Rogers,
who showed that the fraction of a simplex’s volume covered by
spheres centered on the simplex vertices is an upper bound on
the density of a sphere packing, despite the fact that simplices
cannot tile for [21]. Coxeter’s bound uses a similar
argument, except that is replaced by and simplices are
replaced by spherical simplices. (A similar argument was used
for a proposed bound on the quantization coefficient in
[37].) Thus when Coxeter’s bound on is translated to
a bound on , it becomes a statement about the density
of a spherical simplex of edge-length. As , the density
of the spherical simplex of edge-lengthon approaches
the density of a regular simplex in , which gives us the
following lemma.

Lemma 2: Coxeter’s upper bound on asymptotic spherical
coding density equals Rogers’s upper bound on sphere
packing density .

Corollary 2: Coxeter’s upper bound on is tight if and
only if Rogers’s upper bound on is tight. In particular,
Coxeter’s bound is not asymptotically tight for .

Proof: The first statement follows from Observation 1
and Lemma 2. The second statement follows because Rogers’s
bound of has been improved to

[38].

C. Apple-Peeling Spherical Codes and
Other Lower Bounds on Density

Any known -dimensional spherical code with minimum
distance gives a lower bound on , and hence on

. Much work has been done to find the best spherical
codes, such as from binary codes [12], [13], [31]; shells of
lattices [15], [29], [39]; permutations of a set of initial vectors
[40], [41]; simulated annealing or repulsion-energy methods
[8], [28], [42]; concatenations of lower dimensional codes
[30]; projections of lower dimensional objects [24], [26], [28];
and other means [2], [3], [27], [43]–[46].

Unfortunately, none of the spherical coding methods above
performs well in a fixed dimension, as . Also, many
of the methods above produce spherical codes for only a
finite number of minimum distances. Previously, the best
spherical codes known for asymptotically smallwere the so-
called apple-peeling codes due to El Gamalet al. [28]. Their
technique resembles peeling an apple in three dimensions, and
is described below for comparison purposes. We also compute
the asymptotic density of the apple-peeling codes.

Let denote any -dimensional spherical
code with minimum distance, whose codepoints are indexed
from to . The apple-peeling spherical code

on with respect to is defined in [28]
as the set of points
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such that

(12)

is the th (13)

codeword of

It is verified in [28] that the apple-peeling code has minimum
distance .

Summing over all values of in (12) and choosing
to be a maximum size code for allgive the

lower bound

(14)

The Beta function is used in the
following lemma.

Lemma 3: The density of the densest-dimensional apple-
peeling spherical code approaches

as .
Proof: See Appendix I.

Corollary 3: For all , the -dimensional apple-
peeling code is not asymptotically optimal. Furthermore, the
ratio of the asymptotic density of apple-peeling codes in
-dimensions to the maximum asymptotic spherical coding

density tends to as .
Proof: This follows from the facts that is

less than for all and that this quantity approaches
as tends to .

The numerical values of for are not
presently known, except for a handful of values of; hence,

cannot be easily evaluated using (14). Also,
is not known for , and so the asymptotic performance is
also difficult to evaluate. However, the numerical values of the
asymptotic density of the best realizable apple-peeling codes,
given the current state of knowledge of , can be
determined as follows. If, in (13), is
chosen to be the best code known with the given parameters,
then a lower bound on can be computed. By Obser-
vation 1, the density of can be as high
as the density of the best sphere packing known in . The
asymptotic densities of the best apple-peeling codes currently
realizable are given by replacing in the formula for
the density in Lemma 3 with the density of the best sphere
packingknown in . This apple-peeling code asymptotic
density is shown in Fig. 3, using a table [10] of the best sphere
packings known, along with recent improvements from [47]
and [48]. The asymptotic density of the wrapped spherical
codes is equal or higher in every dimension.

III. CONSTRUCTION OFWRAPPED SPHERICAL CODES

In this section, a mapping is introduced which effectively
“wraps” any packing in around ; hence, the spherical

codes it constructs are referred to as wrapped spherical codes.
This technique creates codes of any size and thus provides a
lower bound on achievable minimum distance as a function
of code size. We will show that the spherical code density
approaches the density of the underlying packing, as .

Any spherical code can be described by the projection of
its codepoints to the interior of a sphere of one less dimension
via the mapping

Conversely, a -dimensional spherical code may be obtained
by placing codepoints within and projecting each code-
point onto using the reverse mapping. This mapping was
used by Yaglom [24] to map a -dimensional lattice
onto . However, the distortion created by mappingto
gives poor asymptotic spherical code densities, even ifis the
densest lattice in dimensions, as summarized in Fig. 3.
This is due to the “warping” effect on the codepoints near the
boundary, as illustrated in Fig. 6.

Intuitively, anycontinuous mapping will have this distortion
problem—e.g., it is difficult to wrap a piece of paper around a
ball without wrinkles forming somewhere on the ball. Wrapped
spherical codes avoid the distortion problem by partitioning

into annuli, as shown in Fig. 7(a). Within each annulus,
a continuous, small-distortion mapping is used, as shown in
Fig. 7(b); this mapping is similar but not identical to the
mapping Yaglom used. Using the intuition of Observation 1,
namely, that small patches of can be approximated by small
patches of , each annulus is mapped to a finite region in

. A dense sphere packing is placed in that finite region
and the inverse mapping is applied. The resulting points lie on
the original annuli and are the codepoints of the spherical code.

There is some flexibility in choosing the mappingfrom
each annulus to , but there are several desirable charac-
teristics one would like to have. First, within each annulus,
the mapping should be continuous. This will guarantee that
points of an annulus which are close together remain close
together after is applied to them. One also would liketo
be an easily computable one-to-one function whose inverse is
also easily computable. Third, the mapping should have the
property that if and belong to the same annulus of ,
then . If this is the case, then a
sphere packing with packing radiusin can be projected
to the th annulus of via , to result in a spherical code
with minimum distanceat least . Finally, should have the
property that the -dimensional content of an annulus
should be very similar to the -dimensional content of
the image of that annulus under. This is necessary for the
asymptotic density of the spherical code to equal the density
of the sphere packing used in .

We now discuss the wrapped spherical code construction in
more detail. In particular, we give a precise description of our
choice of the function that satisfies the above requirements.
Let denote a sphere packing in which has minimum
distance and density . may be either a lattice packing
or a nonlattice packing. We define thelatitudeof a point
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Fig. 6. Yaglom’s mapping consists of taking the part of a lattice within

k�1, shown at the top, and projecting it out of the page onto the surface
of 
k, shown at the bottom.

as , i.e., the angle subtended
from the “equator” to . Let
be a sequence of latitudes of annulus boundaries. Theth
annulus is defined as the set of points
that satisfy (i.e., points between
consecutive latitudes), and it is denoted by. The real
numbers will be chosen later to yield a large
code size.

For each , we define a one-to-one mapping from to
a subset of . For each , let

(a)

(b)

Fig. 7. (a) Annuli of
3. (b) Relationship betweenZ2 lattice below and
points of the induced wrapped spherical code above, in an annulus.

i.e., the closest point to that lies on the border between
and . This is shown in Fig. 8. Let prime notation denote the
mapping from to obtained by the deletion of the
last coordinate, so that, for example, .
The function is defined by

(15)

where . Define the th buffer regionof
as the set

The wrapped spherical code with respect to a packing
having minimum distance is defined as

An example of a wrapped spherical code is shown in Fig. 9.
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Fig. 8. Geometrical interpretation of the mappingfi.

Fig. 9. The wrapped spherical codeC�
W

(3; 0:05):

Remarks:

• is a continuous and one-to-one function of.
• Both and are easily computed, as they are merely

scalings of their input and the addition or deletion of the
last coordinate.

• The image of the annulus in under is a region
in bounded by two concentric -dimensional
spheres in .

• Annulus outer boundaries are projected vertically down-
ward. That is, a point lying on the
boundary between and (i.e., such that

), has the property that .
Annulus inner boundaries are projected vertically down-
ward and are then contracted.

As this paper is chiefly concerned with asymptotic perfor-
mance, discussion on small codebook improvements possible
for moderately large minimum distances will be limited.
A number of simple improvements are possible. One such
improvement involves the buffer region, which is included
in the code definition solely to ensure the minimum distance
requirement is met. For a particular value of, a careful
choice of latitudes may make much of the buffer region
unnecessary.

As desired, has the property that
. Given that and that the orientation

of is the same as that of , this property is somewhat
intuitive. A rigorous proof is somewhat cumbersome, however,
and is, therefore, relegated to Appendix II. We state the result
in the following lemma.

Lemma 4: If

and

are in the annulus , then

Proof: See Appendix II.
Corollary 4: If is a sphere packing with minimum dis-

tance , then the minimum distance of the wrapped spherical
code is also at least .

Proof: If distinct belong to the th annulus,
then , since the minimum
distance of is . If and belong to different annuli, then
the definition of guarantees their separation is at least.

IV. A SYMPTOTIC DENSITY OF

THE WRAPPED SPHERICAL CODE

Let denote theangular separationof the
th annulus, let , and let . In order

to have an asymptotically optimal spherical code, one expects
that as , the angular separation of the annuli must go to
zero in order to make the curvature of the annulus negligible,
and that, consequently, the number of annuli must increase.
As , we must also be able to fit in more and more
points in each annulus in order to make the density within each
annulus approximately equal to the maximum packing density.
The following theorem proves that these two conditions are
sufficient for the wrapped spherical code to be asymptotically
optimal.

Theorem 1: Let be a -dimensional sphere packing
with minimum distance . Let be a wrapped spherical
code with respect to and with latitudes . If the
maximum and minimum annulus angular separations satisfy

, then the asymptotic density of
approaches the density of, i.e.,
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Proof: There are two components needed to compute the
density of a spherical code on : the total -dimensional
content of the caps in the code, and the -dimensional
content of . The density equals the former quantity divided
by the latter. To prove the theorem, we show that the -
dimensional content of spheres packed in the images of the
annuli converge to the -dimensional content of the caps
in the wrapped spherical code, and that the images themselves
have content which converges to that of.

We concentrate on an arbitrary annulus, theth annulus ,
and its image, . Let and denote the

-dimensional contents of and , respectively. Note
that and depend on . Throughout this proof, constants
encompassed by notation do not depend on.

First, we show that is very close to . Since is
the region bounded between latitudesand , we have

(16)

where (16) follows from the Taylor expansion of
about . The -dimensional content of is the
difference between the -dimensional contents of two
concentric -dimensional spheres, namely, a sphere of
radius and a sphere of radius .
Thus

and it follows that

(17)

Next, is computed; this is the number of spheres of
the sphere packing that lie within . We have

where the term appears because the density of lattice
points in may be lower than in a region within distance

of the boundary of , and the -dimensional content
of this boundary region is . Note that is a little
more than because deletes any point which lies
within the buffer region . We have

Thus

(18)

(19)

where (18) follows from the left-hand inequality of (17). If,
instead, the right-hand inequality of (17) is used, we obtain

(20)

Since (19) and (20) do not depend on,

(21)

Since , the theorem follows.

Equation (19) also suggests a choice of that will
provide a fast rate of convergence, and implies the following
corollary.

Corollary 5: Let be a -dimensional sphere packing
with minimum distance , and let be a wrapped spherical
code with respect to and with latitudes given by
for . Then the spherical code density satisfies

.
Proof: The result follows immediately from (21), since

.

V. CONCLUSIONS

A new technique was presented that constructs wrapped
spherical codes in any dimension and with any minimum
distance. The construction is performed by defining a map
from to . Although any set of points in
may be wrapped to using our technique, if the densest
packing in is used the wrapped spherical codes are
asymptotically optimal, in the sense that the ratio of the density
of the constructed code to the upper bound approaches one
as the number of codepoints increases. This demonstrates the
tightness of the upper bound in [25], asymptotically, and that
previous spherical codes are not asymptotically optimal.

Related techniques for creating spherical codes may prove
useful. Another class of spherical codes called “laminated
spherical codes” [1] have been created by building up shells of
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codepoints in in such a way that when projected directly
onto they result in a spherical code of minimum distance
. Asymptotically optimal performance has been achieved

in three dimensions, and good asymptotic performance is
also achieved in higher dimensions, where the-dimensional
laminated spherical code density approaches the density of
the laminated lattice . The question of whether the
asymptotic density of the -dimensional laminated spherical
code is optimal is equivalent to the question of whether
is the densest sphere packing.

For nonasymptotic codes, an important question in channel
decoding and quantization is how to find the nearest codepoint
to an arbitrary point in . The decoding complexity of
the wrapped spherical codes turns out to be equivalent to
the decoding complexity of the underlying lattice; a detailed
decoding algorithm and complexity analysis can be found in
[4].

APPENDIX I
PROOF OF LEMMA 3

Let and

and let be the -dimensional content of . Then

Since the th coordinate of every codepoint in is of
the form , every codepoint in has
the same th coordinate, say, . Thus

(22)

By the definition of , given any there exists a
sufficiently small such that

for all . Since

one can apply (7) and obtain

(23)

Hence

(24)

(25)

where (24) follows from (23), and where (25) follows from

By letting and , the result is obtained.

APPENDIX II
PROOF OF LEMMA 4

Let , , and as before,
let prime notation denote the deletion of theth coordinate. Let

Then

(26)

(27)

(28)
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where (27) follows because

To see this, note that depends only on , and not any
of . Hence, for the computation of , no
generality is lost by assuming is a constant
times . This implies and

Thus

(29)

where (29) follows by the triangle inequality. Also, (28)
follows since

(and similarly ) and

by the Cauchy–Schwarz inequality.
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